Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.886
Filtrar
1.
BMC Complement Med Ther ; 24(1): 148, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580956

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked ß-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS: This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or ß-amyloid peptide (Aß25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS: Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aß25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION: These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aß25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.


Asunto(s)
Neuroblastoma , Reishi , Humanos , Peróxido de Hidrógeno/toxicidad , Acetilcolinesterasa , Neuroblastoma/patología , Antioxidantes/farmacología , Péptidos beta-Amiloides/toxicidad , Etanol , Agua
2.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611695

RESUMEN

Oxidative stress plays a crucial role in the pathogenesis of many diseases. Esculetin is a natural coumarin compound with good antioxidant and anti-inflammatory properties. However, whether esculetin can protect HepG2 cells through inhibiting H2O2-induced apoptosis and pyroptosis is still ambiguous. Therefore, this study aimed to investigate the protective effects and mechanisms of esculetin against oxidative stress-induced cell damage in HepG2 cells. The results of this study demonstrate that pretreatment with esculetin could significantly improve the decrease in cell viability induced by H2O2 and reduce intracellular ROS levels. Esculetin not only apparently reduced the apoptotic rates and prevented MMP loss, but also markedly decreased cleaved-Caspase-3, cleaved-PARP, pro-apoptotic protein (Bax), and MMP-related protein (Cyt-c) expression, and increased anti-apoptotic protein (Bcl-2) expression in H2O2-induced HepG2 cells. Meanwhile, esculetin also remarkably reduced the level of LDH and decreased the expression of the pyroptosis-related proteins NLRP3, cleaved-Caspase-1, Il-1ß, and GSDMD-N. Furthermore, esculetin pretreatment evidently downregulated the protein expression of p-JNK, p-c-Fos, and p-c-Jun. Additionally, anisomycin, a specific activator of JNK, blocked the protection of esculetin against H2O2-induced HepG2 cells apoptosis and pyroptosis. In conclusion, esculetin can protect HepG2 cells against H2O2-induced oxidative stress, apoptosis, and pyroptosis via inhibiting the JNK signaling pathway. These findings indicate that esculetin has the potential to be used as an antioxidant that improves oxidative stress-related diseases.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Umbeliferonas , Humanos , Piroptosis , Peróxido de Hidrógeno/toxicidad , Antioxidantes/farmacología , Células Hep G2 , Neoplasias Hepáticas/tratamiento farmacológico , Apoptosis , Estrés Oxidativo
3.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637117

RESUMEN

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Asunto(s)
Senescencia Celular , Técnicas de Cocultivo , Células Epiteliales , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , MicroARNs , Proteínas Oncogénicas , Timo , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Humanos , Células Epiteliales/metabolismo , Cordón Umbilical/citología , Timo/citología , Timo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética
4.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
5.
Food Chem Toxicol ; 186: 114561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438008

RESUMEN

This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.


Asunto(s)
Glutamatos , Peróxido de Hidrógeno , Enfermedades Intestinales , Humanos , Peróxido de Hidrógeno/toxicidad , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Apoptosis , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inflamación , Células Epiteliales/metabolismo
6.
Biosci Rep ; 44(3)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38451099

RESUMEN

In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.


Asunto(s)
Acuaporinas , Astrocitos , Proteínas del Ojo , Neuronas , Neuroprotección , Estrés Oxidativo , Humanos , Acuaporinas/genética , Acuaporinas/metabolismo , Astrocitos/metabolismo , Línea Celular , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Lipopolisacáridos/farmacología , Neuronas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo
7.
Int J Biol Macromol ; 265(Pt 1): 130712, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471602

RESUMEN

Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 â†’ 4)-linked and (1 â†’ 4,6)-linked α-D-Glcp, (1 â†’ 4)-linked α-D-GalpA, (1 â†’ 2)-linked, (1 â†’ 6)-linked and (1 â†’ 2,6)-linked α-D-Manp, and (1 â†’ 6)-linked and (1 â†’ 2,6)-linked ß-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.


Asunto(s)
Ascomicetos , Líquenes , Pectinas , Pectinas/farmacología , Peróxido de Hidrógeno/toxicidad , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Polisacáridos/farmacología , Polisacáridos/química , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/química
8.
J Toxicol Sci ; 49(3): 95-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432956

RESUMEN

This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.


Asunto(s)
Agranulocitosis , Antineoplásicos , Pirazinas , Quinolinas , Humanos , Cloraminas , Glutatión , Células HL-60 , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno , Agranulocitosis/inducido químicamente , Cloruros , Piperazinas
9.
Nihon Shokakibyo Gakkai Zasshi ; 121(3): 230-236, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38462471

RESUMEN

A 40-year-old woman was admitted to our hospital by ambulance due to accidental ingestion of 100ml of 35% hydrogen peroxide. Although the patient suffered from frequent vomiting, abdominal distension, and abdominal pain, signs of peritonitis were not observed. An abdominal computed tomography examination demonstrated obvious gas images in the gastric wall and intrahepatic portal veins. Upper gastrointestinal endoscopy revealed mucosal redness, swelling, and erosion from the lower part of the esophagus to the duodenum. Portal venous gas and upper gastrointestinal mucosal injury due to accidental hydrogen peroxide ingestion were suspected. As the vital signs were stable and there were no signs peritoneal irritation or neurological symptoms, she was treated medically with vonoprazan, rebamipide, and sodium alginate. The next day, abdominal symptoms immediately improved and 3 days later, hepatic portal venous gas had disappeared on ultrasonography. She was discharged on the 5th day after admission. Two months later, upper gastrointestinal endoscopy showed improvement in inflammatory findings. We report a remarkable case of hepatic portal venous gas and upper gastrointestinal mucosal injury and elucidate the endoscopic findings associated with hydrogen peroxide ingestion.


Asunto(s)
Embolia Aérea , Peróxido de Hidrógeno , Adulto , Femenino , Humanos , Ingestión de Alimentos , Embolia Aérea/inducido químicamente , Embolia Aérea/diagnóstico por imagen , Peróxido de Hidrógeno/toxicidad , Inflamación , Hígado , Vena Porta/diagnóstico por imagen
10.
Biomed Pharmacother ; 174: 116489, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513595

RESUMEN

Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Peróxido de Hidrógeno , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Animales , Peróxido de Hidrógeno/toxicidad , Ratas , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Bradiquinina/farmacología , Bradiquinina/análogos & derivados , Transducción de Señal/efectos de los fármacos
11.
Exp Eye Res ; 242: 109852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460719

RESUMEN

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Asunto(s)
Apoptosis , Ceramidas , Cicloserina , Estrés Oxidativo , Esfingolípidos , Estrés Oxidativo/efectos de los fármacos , Cicloserina/farmacología , Animales , Ceramidas/metabolismo , Ceramidas/farmacología , Ratones , Esfingolípidos/metabolismo , Apoptosis/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Serina C-Palmitoiltransferasa/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Línea Celular , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & control , Degeneración Retiniana/patología , Degeneración Retiniana/tratamiento farmacológico , Western Blotting , Inhibidores Enzimáticos/farmacología , Supervivencia Celular/efectos de los fármacos
12.
Phytomedicine ; 128: 155468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471315

RESUMEN

BACKGROUND: Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE: The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN: The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS: First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS: In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION: Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.


Asunto(s)
Autofagia , Curcumina , Ovario , Estrés Oxidativo , Serina-Treonina Quinasas TOR , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Curcumina/farmacología , Células de la Granulosa/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Nitrocompuestos , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Propionatos/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338706

RESUMEN

Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 µM and 200 µM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.


Asunto(s)
ADN Mitocondrial , Leucocitos Mononucleares , ADN Mitocondrial/metabolismo , Leucocitos Mononucleares/metabolismo , Peróxido de Hidrógeno/toxicidad , Variaciones en el Número de Copia de ADN , Mitocondrias/genética , Mitocondrias/metabolismo , Acortamiento del Telómero , Telómero/genética , Telómero/metabolismo , Estrés Oxidativo
14.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338880

RESUMEN

Plants and plant extracts are a relevant source of bioactive compounds widely employed as functional foods. In the Mediterranean area, the shrub Sarcopoterium spinosum is traditionally used as an herbal medicine for weight loss and a diabetes treatment. Inflammation is a protective mechanism involved in the development of many pathological conditions, including cardiovascular diseases. The present study aimed to investigate in vitro the antioxidant and cytoprotective properties of an ethanolic extract from S. spinosum fruits (SEE) in a cellular model of endothelium dysfunction. Corilagin and quercetin are two polyphenols abundant in SEE and were tested for comparison. The exposure of HECV cells for 24 h to 30 µM hydrogen peroxide (H2O2) lead to an oxidative stress condition. When HECV cells were treated with 10 µg/mL of SEE or single compounds after or before the oxidative insult, the results showed their ability to (i) decrease the reactive oxygen species (ROS) production quantified using fluorometric analysis and the lipid peroxidation measured with a spectrophotometric assay; (ii) rescue both the glutathione reduced to oxidized (GSH/GSSG) ratio and nitric oxide impair and the protein denaturation; and (iii) accelerate the wound repair measured using a T-scratch assay. Taken together, our findings indicate that the ethanolic extract from S. spinosum fruits could be a potential candidate for nutraceutical application.


Asunto(s)
Frutas , Peróxido de Hidrógeno , Peróxido de Hidrógeno/toxicidad , Células Endoteliales , Antioxidantes/farmacología , Estrés Oxidativo , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Glutatión/farmacología , Etanol/farmacología
15.
Exp Eye Res ; 241: 109817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340945

RESUMEN

Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.


Asunto(s)
Catarata , Cristalino , MicroARNs , Humanos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Cristalino/metabolismo , Apoptosis , Catarata/genética , Catarata/metabolismo , Epitelio/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , MicroARNs/genética
16.
Mar Drugs ; 22(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38393028

RESUMEN

Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Peróxido de Hidrógeno/toxicidad , Mitofagia , Neuroblastoma/tratamiento farmacológico , Apoptosis , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Xantófilas
17.
Tissue Cell ; 87: 102322, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367324

RESUMEN

Ribisin A has been shown to have neurotrophic activity. The aim of this study was to evaluate the neuroprotective effect of ribisin A on injured PC12 cells and elucidate its mechanism. In this project, PC12 cells were induced by H2O2 to establish an injury model. After treatment with ribisin A, the neuroprotective mechanism of ribisin A was investigated by methyl tetrazolium (MTT) assay, Enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, fluorescent probe analysis, and western blot. We found that ribisin A decreased the rate of lactate dehydrogenase (LDH) release, increased cellular superoxide dismutase (SOD) level, decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Ca2+ expression and reactive oxygen species (ROS). Moreover, ribisin A significantly increased mitochondrial membrane potential (MMP) and inhibited apoptosis of PC12 cells. Meanwhile, ribisin A activated the phosphorylation of ERK1/2 and its downstream molecule CREB by upregulating the expression of Trk A and Trk B, the upstream molecules of the ERK signaling pathway.


Asunto(s)
Catecoles , Peróxido de Hidrógeno , Fármacos Neuroprotectores , Ratas , Animales , Células PC12 , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Apoptosis , Estrés Oxidativo , Supervivencia Celular
18.
Artículo en Inglés | MEDLINE | ID: mdl-38272630

RESUMEN

Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H2O2. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H2O2 enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H2O2-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.


Asunto(s)
Desoxiguanosina , Peróxido de Hidrógeno , Humanos , 8-Hidroxi-2'-Desoxicoguanosina , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo , Daño del ADN , Glucosa , Cobre/farmacología , Oxidación-Reducción
19.
Nucleic Acids Res ; 52(4): e22, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38261985

RESUMEN

In the comet assay, tails are formed after single-cell gel electrophoresis if the cells have been exposed to genotoxic agents. These tails include a mixture of both DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). However, these two types of strand breaks cannot be distinguished using comet assay protocols with conventional DNA stains. Since DSBs are more problematic for the cells, it would be useful if the SSBs and DSBs could be differentially identified in the same comet. In order to be able to distinguish between SSBs and DSBs, we designed a protocol for polymerase-assisted DNA damage analysis (PADDA) to be used in combination with the Flash comet protocol, or on fixed cells. By using DNA polymerase I to label SSBs and terminal deoxynucleotidyl transferase to label DSBs with fluorophore-labelled nucleotides. Herein, TK6-cells or HaCat cells were exposed to either hydrogen peroxide (H2O2), ionising radiation (X-rays) or DNA cutting enzymes, and then subjected to a comet protocol followed by PADDA. PADDA offers a wider detection range, unveiling previously undetected DNA strand breaks.


Asunto(s)
Ensayo Cometa , Daño del ADN , Ensayo Cometa/métodos , ADN/genética , ADN Polimerasa Dirigida por ADN , Peróxido de Hidrógeno/toxicidad
20.
Eur J Pharmacol ; 966: 176339, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272342

RESUMEN

Autophagy is closely related to the aging of various organ systems, including ovaries. Quercetin has a variety of biological activities, including potential regulation of autophagy. However, whether quercetin-regulated autophagy activity affects the process of ovarian aging and injury has not been clarified yet. This study explores whether quercetin can resist H2O2-induced aging and injury of granulosa cells by regulating autophagy and its related molecular mechanisms in vitro experiments. The cell viability, endocrine function, cell aging, and apoptosis were detected to evaluate the effects of quercetin and autophagy regulators like 3-methyladenine and rapamycin. The levels of autophagy markers Atg5, Atg12, Atg16L, Lc3B II/I, and Beclin1 were determined by Western blot to assess the effects of quercetin, 3-methyladenine and rapamycin on autophagy. Our results showed quercetin resisted H2O2-induced granulosa cell aging and injury by activating protective autophagy. The treatment of 3-methyladenine and rapamycin confirmed the protective function of autophagy in H2O2-induced granulosa cells. 3-methyladenine treatment inhibited the expression of autophagy markers Atg5, Atg12, Atg16L, Lc3B II/I, and Beclin1 and abolished the positive effects on cell viability, estradiol secretion, and cell apoptosis activated by quercetin. In conclusion, quercetin activates autophagy by upregulating the expression of autophagy-related proteins to resist H2O2-induced aging and injury, which is crucial for stabilizing the function of granulosa cells under oxidative injury conditions and delaying aging. This study may explain the protective effects of quercetin on ovarian aging and injury from the perspective of regulating autophagy.


Asunto(s)
Peróxido de Hidrógeno , Quercetina , Femenino , Ratas , Animales , Quercetina/farmacología , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Beclina-1/metabolismo , Células de la Granulosa , Envejecimiento , Apoptosis , Autofagia , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA